MAIN SCIENTIFIC RESULTS of V. LETOKHOV

(period 1965-2008)

 

 

            I. V.Letokhov’s early works in P.N.Lebedev Physical Institute devoted to various problems of lasers: (1) nonlinear propagation of powerful laser pulses through an amplifying media [1] and discovery of superluminal propagation of maximum of pulse [2]; (2) the generation of ultrashort pulses (self-mode locking) and discovery of fluctuational mechanism of origin of ultrashort pulses [3, 4]; (3) proposal and study of diffractional coupling of lasers, including diode lasers [5], which appeares to be useful now for laser diode arrays; (4) proposals and study of various highly frequency stable lasers, including inverted Lamb dip in He-Ne/CH4 laser [6] and CO2/OsO4 laser [7]; (5) proposal and study of lasers with scattering (noncoherent) feedback [8], including lasing in a scattering medium with negative resonant absorption [9], which was rediscovered in USA 25 years later; (6) prediction of space maser and stellar lasers with resonant scattering feedback [10, 11]; (7) realization of IR gas lasers with optical pumping [12]; (8) proposal of far VUV lasers, based on fast heating of plasma electrons by ultrashort laser pulses [13], proposal and study of X-ray laser using Ne-like multicharged ions [14], which was used for first X-ray laser in Livermore Laboratory, USA; (9) proposal of the optical separation of isomeric (excited) nuclei by laser radiation [15] and study of g-laser scheme using such separation [16].

 

            II. Next trend of V.Letokhov’s research – Laser Spectroscopy. He performed pioneering works on saturation spectroscopy [17, 18]. Results of this research published in monograph [19]. He proposed and realized resonance ionization spectroscopy (RIS) [20], including laser detection of single atoms [21] with many applications of RIS in analytics [22, 24], study of highly-excited states of rare atoms [25], first detection of molecules by RIS and resonant-enhanced multiphoton ionization (REMPI) with mass-spectrometry [26]. Other results of his research are (a) development of the fluorescent photon-burst spectroscopy (detection of single atoms [28] and very rare isotopes [29]); (b) development of photoacoustical and photothermal spectroscopy with combination with gas-chromatography [30] etc., (see monograph [31]) and recently optoacoustical tomography of spatially nonhomogeneous media [32]; (c) using of ultrafast spectroscopy for study of ultrafast relaxation processes in high-temperature superconductors [33] and fullerene [34].

            His next significant result is in field of laser spectroscopy with subwavelength spatial resolution. He proposed [35], persuaded during 20 years and finally experimentally realized laser resonant photoelectron microscopy with spatial resolution about 30 nm [36] and laser resonant photoion microscopy with resolution about 5 nm [37]. Moreover he recently proposed the new type of scanning optical microscopy with nanometer spatial resolution based on resonance excitation of fluorescence from one-atom excited center [38].

 

            III. For over 25 years Prof. V.Letokhov has been very successful in studying the resonance interaction of laser light with atoms and molecules. Particularly, he with his coworkers suggested, discovered, and developed the new field of research of principal importance: Laser Control of Atomic Motion. He is author of pioneering works of 1968 and 1973 [39, 40] on the trapping (channeling) of atoms by the gradient dipole force and the proposal of “optical lattices” [40, 41], definition  of Doppler limit of laser cooling of atoms [41].

            He with his group were the first to perform experiments in 1979 on the cooling and monochromatization [42], collimation [43], and reflection [44] of atomic beam with laser radiation and were the first to suggest the laser-like cavity for atomic-matter waves with high degeneracy [45] and sharp focusing (to Angstrom size) of atomic beam [46]. These works have received wide acceptance in many laboratories of various countries.

            Many of the works done by his group were summarized in the monograph [47]. There can be no doubt that the investigations conducted by Prof. V.Letokhov contributed significantly to the formation of this new field of research in atomic laser physics, atom optics in particular [48].

 

            IV. For over 25 years Prof. V.Letokhov has been very successful in studying the resonance interaction between laser light and atoms and molecules. He suggested, discovered, and developed a new field of research of principal importance: Photoselective Multiphoton Chemistry.

         (a) Resonance Laser Ionization of Atoms and Molecules. He is the author of pioneering works [49, 50] that led to the creation of, first, resonance stepwise ionization spectroscopy and secondly, a new laser isotope separation technique. His group demonstrated an exceptionally high sensitivity and selectivity of resonance ionization spectroscopy in experiments on the detection of ultratrace elements.

         He proposed [51, 52] and successfully demonstrated [53, 26] multiphoton resonance ionization of molecules (REMPI) in mass-spectrometry. Today this technique plays an exceptionally important role in probing molecular dynamics with molecular beams, etc. The main results obtained by Prof. V.Letokhov were summarized in his monograph [27].

          (b) Vibrationally Mediated Photoselective Chemistry. He was the first to combine together the idea of photoselective excitation of vibrational states of molecules with subsequent excitation of reactive electronic states [49, 50]. Today photoselective multiphoton chemistry is one of the most powerful approach in photochemistry. The main results obtained by Prof. V.Letokhov were summarized in his monograph [54].
         
(c) Multiple-Photon IR Laser Resonance (Isotopically-Selective) Photodissociation of Molecules. He is author of pioneering works [55, 56] in which of phenomenon of the multiple-photon photoselective (isotopically-selective) vibrational photoexcitation and photodissociation of polyatomic molecules by powerful IR laser pulse have been discovered. These works initiated an explosion of research in selective multiple-photon laser vibrational photophysics and photochemistry and their applications. A results of these and many subsequent works was, the first the emergence of a new field of research, namely, the multiple-photon IR laser photophysics and photochemistry of molecules in the ground electronical state and secondly, the development of a new method for isotope separation by IR laser light that is now at the industrial implementation stage. The achievements of Prof. V.Letokhov and his group gained world-wide recognition and were summarized in the monographs [54, 57, 58].

            Main results in this field have been summarized on recent major conferences on femtochemistry [59-62].

 

            V. Other field of his successful research are Laser Applications in Nuclear Physics, including laser spectroscopy of short-lived and long-lived rare isotopes. For example, he spectroscopically studied the Fr-221 in trace amount (104 atoms) [63], invented technique for detection of very rare long-lived isotopes [64, 65], developed Z-selective photoion source for CERN, based on multistep resonance ionization [66]. It is worthy to mention pioneering works [67, 68] on the difference of energy levels of left and right molecules due to parity violation at weak interactions (PVED effect) and possible connection of this effect with biological isomerism.

 

       VI. In field of Laser Biomedicine he studied spectral properties of atherosclerotic plaques [69], revealed mechanisms of laser ablation on nonhomogeneous absorbing media (biotissue) [70] etc.

 

            VII. Recently he concentrated on study of change of spectral and optical properties of atom in vicinity or inside of nanostructure [71-76]. It is part of growing new field of research which can be called as “Nanooptics”.


            VIII.  Recently V.S.Letokhov concentrated on study of astrophysical laser and astrophysical spectroscopy [77-95]. These results are summarized in monograph [96].

         


References

 

 

1.         Nonlinear amplification of a light pulse.

            N.G. Basov, R.V. Ambartsumian, V.S. Zuyev, P.G. Kryukov, and V.S. Letokhov.
Zh. Eksp. Teor. Fiz. 50, ¹1, 23-34 (1966) (in Russian).

 

2.         Nonlinear amplification of light pulses. II. Propagation velocity.

            V.S. Letokhov.

            Zh. Tekhn. Fiz. (J. Techn. Phys.) 38, ¹5, 856-864 (1968) (in Russian).

 

3.         Ultrashort light pulse generation in a laser with a nonlinear absorber.

            V.S. Letokhov.

            Zh. Eksp. Teor. Fiz. 54, ¹3 (9), 1077-1089 (1968); Errata Zh. Eskp. Teor. Fiz. 56,
            ¹1, 414 (1969) (in Russian).

 

4.         Fluctuation mechanism of ultrashort pulse generation by laser with saturable absorber.

            P.G. Kryukov and V.S. Letokhov.

            IEEE Journ. of Quant. Electr. QE-8, ¹10, 766-782 (1972).

 

5.         Oscillation locking in a semiconductor laser with several p-n junctions.
N.G. Basov, E.M. Belenov, and V.S. Letokhov.

            Fiz. Tverd. Tela (Solid State Phys.) 7, ¹1, 337-339 (1965) (in Russian).

 

6.         Laser frequency autostabilization by nonlinear absorption in a gas.

            V.S. Letokhov.

            Pis'ma Zh. Eksp. Teor. Fiz. 6, ¹ 4, 597-600 (1967) (in Russian).

 

7.         Nonlinear laser spectroscopy of vibrational-rotational transitions

in monoisotopic OsO4 molecules and CO2-laser frequency stabilization.

O.N. Kompanets, A.R. Kukudzhanov, V.S. Letokhov, V.G. Minogin and E.L. Mikhailov.

Zh. Eksp. Teor. Fiz. 69, ¹7, 32-47 (1975) (in Russian).

 

8.         Lasers with non-resonant feedback.

            R.V. Ambartsumian, N.G. Basov, P.G. Kryukov, and V.S. Letokhov.

            IEEE Journ. of Quant. Electr. QE-2, ¹9, 442-446 (1966).

 

9.         Light generation by a scattering medium with a negative resonant absorption.

            V.S. Letokhov.

            Zh. Eksp. Teor. Fiz. 53, ¹4(10), 1442-1452 (1967) (in Russian).

 

10.       Space maser with a feedback.

            V.S. Letokhov.

            Astronomicheskii Zhurnal (Astronomical J.) 49, ¹4, 737-743 (1972) (in Russian).

 

11.       The possibility of the laser effect in stellar atmospheres.

N.N. Lavrinovich and V.S. Letokhov.

            Zh. Eksp. Teor. Fiz. 67, ¹5(11), 1609-1620 (1974) (in Russian); [Sov. Phys. JETP 40, 800-805 (1974)].

 

12.       Studies of 10.6 µm CO2 laser pumped by a 9.6 µm pulsed CO2-N2-He laser.

            V.I. Balykin, A.L .Golger, Yu.R. Kolomiiskii, V.S. Letokhov, and O.A. Tumanov.
             Kvantovaya Elektronika 1,
¹11, 2386-2398 (1974) (in Russian).

 

13.       Excitation of far vacuum UV lasers by fast heating of plasma electrons in ultrashort pulsed optical fields.

            I.N. Knyazev and V.S. Letokhov.

            Optics Communications 3, ¹5, 332-334 (1971).

 

14.       Observation of amplification in the far VUV region on transitions of multiply charges ions in an extended laser plasma.

            A.N. Zherikhin, K.N. Koshelev, P.G. Kryukov, V.S. Letokhov, and S.V. Chekalin.
            Kvantovaya Elektronika 8,
¹1, 88-97 (1981) (in Russian).

 

15.       Possibility of the optical separation of the isomeric nuclei by laser radiation.

V.S. Letokhov.

Optics. Comm. 7, ¹1, 59-60 (1973).

 

16.       On the problem of the gamma-laser using nuclear transitions.

            V.S. Letokhov.

           Zh. Eksp. Teor. Fiz. 64, ¹5, 1555-1567 (1973) (in Russian).

 

17.       On an optical frequency standard with a nonlinearly absorbing gas cell.

            V.S. Letokhov and V.N. Chebotayev.

            Pis'ma Zh. Eksp. Teor. Fiz. 9, ¹6, 364-367 (1969) (in Russian).

 

18.       Study of narrow resonances within the Doppler linewidth of rotational-vibrational

            transitions in SF6 upon absorption saturation.

            N.G. Basov, O.N. Kompanets, V.S. Letokhov, and V.V. Nikitin.

            Zh. Eksp. Teor. Fiz. 59, ¹2(8), 394-403 (1970) (in Russian).

 

19.       Nonlinear laser spectroscopy.

            V.S. Letokhov and V.P. Chebotayev.

            (Springer-Verlag, Berlin-Heidelberg-New York, 1976), 466 pp.

 

20.       Selective two-step photoionization of rubidium atoms with laser radiation.

            R.V. Ambartsumian, V.P. Kalinin, and V.S. Letokhov.

            Pis'ma Zh. Eksp. Teor. Fiz. 13, 305-308 (1971) (in Russian); [JETP Lett. 13, 217 (1971)].

 

21.       Single-atom detection of utterbium by selective laser excitation and field ionization from Rydberg states.

G.I. Bekov, V.S. Letokhov, O.I. Matveev, and V.I. Mishin.

Optics Lett. 3, ¹5, 159-161 (1978).

 

22.       Direct determination of aluminium in natural waters by laser stepwise

photoionization.

G.I. Bekov, A.S. Egorov, V.S. Letokhov, and V.N. Radayev.

Nature 301, 410-412 (1983).

 

23.       Ruthenium in the ocean.

G.I. Bekov, V.S. Letokhov, V.N. Radayev, A.S.Yegorov, G.N. Baturin, A.N. Kurski, and V.A. Nerseev.

Nature 312, 748-750 (1984).

 

24.       Rhodium distribution at the Cretaceous/ Tertiary boundary analysed by ultrasensitive laser photoionization.

            G.I. Bekov, V.S. Letokhov, V.N. Radayev, D.D. Badyukov, and  M.A.Nazarov.

            Nature 332, March 10, 1988, pp. 146-148.

 

25.       Laser resonance photoionization spectroscopy of Rydberg levels in Fr.

S.V. Andreev, V.S. Letokhov, and V.I. Mishin.

Phys. Rev. Lett. 59, ¹12, 1274-1276 (1987).

 

26.       Stepwise laser photoionization of molecules in mass-spectrometer: a new method

            of probing and detection of polyatomic molecules.

            V.S. Antonov, I.N. Knyazev, V.S. Letokhov, V.M. Matyuk, V.G. Movshev, and V.K. Potapov.

            Optics Lett. 3, ¹2, 37-39 (1978).

 

27.       Laser Photoionization Spectroscopy.

V.S. Letokhov.

(Academic Press, New York, 1987), 353 pp.

 

28.       Laser fluorescence detection of single atoms.

            V.I. Balykin, V.S. Letokhov, V.I. Mishin, and V.A. Semchishen.

            Pis'ma Zh. Eksp. Teor. Fiz. 26, ¹6, 492-495 (1977) (in Russian).

 

29.       Multiphotoelectron fluorescence selective detection of single atoms by laser  radiation.

            V.I. Balykin, V.S. Letokhov, and V.I. Mishin.

             Appl. Phys. 22, 245-248 (1980).

 

30.       Application of IR laser optoacoustic spectroscopy in gas chromatography.
            V.P. Zharov, S.G. Montanari, and V.S. Letokhov.

            Laser Chemistry 1, ¹3, 163-176 (1983).

 

31.       Laser optoacoustical spectroscopy.

            V.P. Zharov, and V.S. Letokhov.

             Springer Series in Optical Sciences (Springer-Verlag, Berlin-Heidelberg-New York, 1986), Vol. 37, 327 pp.

 

32.       Time-resolved laser optoacoustical tomography of inhomogeneous media.

            A.A. Karabutov, N.B. Podymova, V.S. Letokhov.

            Appl. Phys. B63, 545-563 (1996).

 
33.       Femtosecond spectroscopy of YBa2Cu3O7-
d electron-phonon interaction measurements and energy-gap observation.

S.V. Chekalin, V.M. Farztdinov, V.V. Golovlev, V.S. Letokhov, Yu.E.Lozovik, Yu.A.Matveets, and A.G.Stepanov.

(a) Phys. Rev. Lett. 67, 3860-3863 (1991).

(b) In: Ultrafast Processes in Spectroscopy, ed. by A. Laubereau, Proc. Int. Symp., Bayreuth, 1991 inst. Phys. Conf.
            Ser. ¹12, (1992), 261-266.

 

34.       Spectral Dependence of Femtosecond Relaxation and Coherent Photon Excitation  in C60 Films.

            V.M. Farztdinov, A.L. Dobryakov, V.S. Letokhov, Yu.E. Lozovik, Yu.A. Matveetz, S.A. Kovalenko, N.P. Ernsting.

            Phys. Rev. B56, ¹7, 4176-4185 (1997).

 

35.       The use of laser radiation in autoelectron and autoion microscopy for the  observation of biomolecules.

            V.S. Letokhov.

            Kvantovaya Elektronika 2, ¹5, 930-937 (1975) (in Russian); [Sov. J. Quant. Electr. 5, 506 (1975)].

 

36.       Laser resonance photoelectron microscopy with a subwavelength-high spatial resolution: the first
observation of single color-centers on surface.

            V.N. Konopsky, S.K. Sekatskii, V.S. Letokhov.

            Optics Comm. 132, 251-256 (1996).

 

37.       Laser photoselective photoion microscopy with 5 nm resolution.

            S.K. Sekatskii, D.V. Serebriakov, V.S. Letokhov.

            Pis’ma Zh. Eksp. Teor. Fiz. 67, ¹7, 450-454 (1998); [JETP Lett. 67, ¹7, 470-475(1998);
Rev. Sci. Instr. 69,
¹10 ... (1998)].

 

38.       Scanning Optical Microscopy with Nanometer Spatial Resolution Based on

Resonance Excitation of Fluorescence from One-Atom Excited Center.

S.K. Sekatskii, V.S. Letokhov.

Pis'ma Zh. ETF 63, ¹5, 311-315 (1996); [JETP Lett. 63, 319-323 (1996)].

 

39.       Doppler line narrowing in a standing light wave.

            V.S. Letokhov.

            Pis'ma Zh. Eksp. Teor. Fiz. 7, ¹9, 348-351 (1968) (in Russian); [JETP Lett. 7, 272-274 (1968)].

 

40.       New possibilities for the spectroscopy inside the Doppler line in the optical and g-ranges.

            V.S. Letokhov.

            Proceedings of the Conference "Methods of Spectroscopy without Doppler Broadening of Excited Levels
            of Simple Molecules (Aussois, France, May 23-26, 1973), pp. 127-138, 1974; Laser and Unconventional
            Optics
¹46, 3-27 (1973).

 

41.       Cooling and trapping of atoms and molecules by a resonant light field.
            V.S. Letokhov, V.G. Minogin, and B.D. Pavlik.

            Zh. Eksp. Teor. Fiz. 72, ¹4, 1328-1341 (1977) (in Russian).

 

42.       Radiative deceleration and monochromatization of a sodium atomic beam in a

            counter-propagation laser beam.

            S.V. Andreyev, V.I. Balykin, V.S. Letokhov, and V.G. Minogin.

            Zh. Eksp. Teor. Fiz. 82, ¹5, 1429-1441 (1982) (in Russian).

 

43.       Radiative collimation of an atomic beam by way of two-dimensional cooling with

            laser radiation.

            V.I. Balykin, V.S. Letokhov, A.I. Sidorov.

            Pis'ma Zh. Eksp. Teor. Fiz. 40, ¹6, 251-253 (1984) (in Russian).

 

44.       Quantum-state-selective mirror reflection of atoms by laser light.

V.I. Balykin, V.S. Letokhov, Yu.B. Ovchinnikov, A.I. Sidorov.

Phys. Rev. Lett. 60, 2137-2140 (1988). Erratum 61, 902 (1988).

 

45.       Atomic cavity with light-induced mirrors.

            V.I. Balykin, V.S. Letokhov.

            Appl. Phys. B48, 517-523 (1989).

 

46.       The possibility of deep laser focusing of an atomic beam into the Å-region.
            V.I. Balykin, and V.S. Letokhov.

            Optics Comm. 64, ¹2, 151-156 (1987).

 

47.       Laser Light Pressure on Atoms.

V.G. Minogin and V.S. Letokhov.

(Gordon and Breach Science Publ., New York, 1987), 248 pp.

 

48.       Atom Optics with Laser Light.

            V.I. Balykin and V.S. Letokhov.

            Harwood Acad. Publ. Chur, 1995, 1-115 pp.

 

49.       On the possibility of isotope separation by resonant atomic photoionization and molecular
            photodissociation with laser radiation.

            V.S. Letokhov.

            Report on Lebedev Physical Institute, Nov. 1969 Institute of Spectroscopy USSR Acad. Sci., Troitsk,
            Reprints
¹1, 1979), pp. 1-54 (in Russian).

 

50.       Selective two-step (STS) photoionization of atoms and photodissociation of molecules by laser radiation.

            R.V. Ambartsumian, and V.S. Letokhov.

            Applied Optics 11, ¹2, 354-358 (1972).

 

51.       Future applications of selective laser photophysics and photochemistry.

            V.S. Letokhov.

            Proceedings of the Conference Tunable Lasers and 1heir Applications (Loen, Norway, June 8-11, 1976),
            ed. by A. Mooradian, T. Jaeger, and P. Stokseth (Springer-Verlag, Berlin-Heidelberg-New York, 1976),
            pp. 122-139.

 

52.       Laser selective detection of ultralow concentrations of molecules.

V.S. Letokhov.

Comm. on Atom. and Molec. Phys. 7, ¹3/4, 107-116 (1977).

 

53.       Mass spectrometer with selective stepwise photoionization of molecules with laser radiation.

            V.S. Antonov, I.N. Knyazev, V.S. Letokhov, V.M. Matyuk, V.G. Movshev, and V.K. Potapov.

            Pis'ma Zh. Tekhn. Fiz. 3, ¹23, 1287-1291 (1977) (in Russian).

 

54.       Nonlinear Laser Chemistry. Multiple-Photon Excitation.

            V.S. Letokhov.

            Springer Series in Chemical Physics (Springer-Verlag, Berlin-Heidelberg-New York, 1983),
            Vol. 22, 417 pp.

 

55.       Isotope-selective chemical reaction of BC13 in a strong IR laser field.

R.V. Ambartsumian, V.S. Letokhov, E.A. Ryabov, and N.V. Chekalin.

Pis'ma Zh. Eksp. Teor. Fiz. 20, ¹9, 597-600 (1974) (in Russian); [JETP Lett.20, 273-275 (1974)].

 

56.       Separation of sulfur isotopes with an enrichement ratio higher than 103 by acting on the
            SF6 molecule with a CO2-laser radiation.

            R.V. Ambartsumian, Yu.A. Gorokhov, V.S. Letokhov, and G.N. Makarov.

            Pis'ma Zh. Eksp. Teor. Fiz. 21, ¹6, 375-378 (1975) (in Russian); [JETP Lett. 21, 171-174 (1975)].

 

57.       Multiple photon infrared laser photophysics and photochemistry.

V.N. Bagratashvili, V.S. Letokhov, A.A. Makarov, and E.A. Ryabov.

(Harwood Acad. Publ., Chur, 1986), 512 pp.

 

58.       Laser Spectroscopy of Highly Vibrationally Excited Molecules.

            V.S. Letokhov, ed.

            (Adam Hilger, Bristol and Boston, 1989), pp. 384.

 

59.       Femtospectrochemistry: Novel Possibilities with Three-Dimensional (Space-Time) Resolution.

            V.S.Letokhov.

            In: “Chemical Reactions and their Control on the Femtosecond Time Scale”, ed. by

            P.Gaspard and I.Burghardt. Proced. of XXth Solvay Conference on Chemistry, Adv. in
           
Chem. Phys., vol. 101 (Wiley, 1997), 873-887.

 

60.        Concluding Remark on XXth Solvay Conference on Chemistry.

            V.S. Letokhov.

            In: “Chemical Reactions and their Control on the Femtosecond Time Scale”, ed. by

            P.Gaspard and I.Burghardt. Proced. of XXth Solvay Conference on Chemistry, Adv. in Chem. Phys., Vol. 101
            (Wiley, 1997), 896-898.

 

61.        Multiphoton Nanosecond-to-Femtosecond Laser Chemistry.

            V.S.Letokhov.

            In: “Femtochemistry and Femtobiology: Ultrafast Reaction Dynamics at Atomic-ScaleResolution”, ed. by V. Sundström,
            Proceed. of Nobel Symposium, Sept. 9-12, 1996, Bjorkborn (Imperial College Press, 1997), 597-628.

 

62.        Ultrafast Processes: from the Past to the Future.

            V.S.Letokhov.

            In: “Femtochemistry and Femtobiology: Ultrafast Reaction Dynamics at Atomic-Scale Resolution”, ed. by V.Sundström,
            Proceed. of Nobel Symposium, Sept. 9-12, 1996, Bjorkborn (Imperial College Press, 1997), 755-763.

 

63.       Rydberg levels and ionization potential of francium measured by laser-resonance

ionization in hot cavity.

S.V. Andreev, V.I. Mishin, and V.S. Letokhov.

JOSA B36, 2190-2198 (1988).

 

64.       Method of highly selective detection of rare radioactive isotopes through multistep

            photoionization of acceleration atoms.

            Yu.A. Kudryavtsev, and V.S. Letokhov.

            Appl. Phys. B29, 219-221 (1982).

 

65.       Laser detection of the rare isotopes 3He at concentrations as low as 10-9.

            S.A. Aseyev, Yu.A. Kudryavtsev, V.S. Letokhov, V.V. Petrinin.

            Optics Lett. 16(7), 514-516 (1991).

 

66.       Chemically selective laser ion-source for the CERN- ISOLDE on-line mass separator facility.

            V.I. Mishin, V.N. Fedoseyev, H.-J. Kluge, V.S. Letokhov, H.L. Ravn, F. Scheerer, Y. Shirakabe,
            S. Sundell, O. Tengblad, and the ISOLDE collaboration.

            Nucl. Instr. and Meth. in Physics Research B73, 550-560 (1993).

 

67.       On difference of energy levels of left and right molecules due to weak interactions.

            V.S. Letokhov.

            Phys. Lett. 53A, ¹4, 275-276 (1975).

 

68.       Possible connection between weak interaction and the biological isomerism.

            V.S. Letokhov.

            Lettere al Nuovo Cimento 20, ¹3, 107-111 (1977).

 

69.       Spectral properties of human atherosclerotic blood vessel walls.

A.A. Orayevskii, V.S. Letokhov, A.E. Ragimov, V.G. Omelyanenkh, A.A. Belayev,

B.V. Shekhonin, and R.S. Akchurin.

Lasers in the Life Sciences 2(4), 257-270 (1988).

 

70.       Pulsed laser ablation of biological tissue: review of the mechanisms.

A.A. Oraevskii, R.O. Esenaliev, V.S. Letokhov.

In: Laser Ablation. Mechanisms and Application, ed. by J.C. Miller and

R.F. Haglund (Springer-Verlag, Berlin, 1991), 112-122.

 
71.       Spontaneous emission rate and level shift of an atom inside a dielectric microsphere.

V.V. Klimov, M. Ducloy, V.S. Letokhov.

Journ. Modern Optics 43, ¹3, 549-563 (1996).

 

72.       Radiative frequency shift and linewidth of an atom dipole in vicinity of a dielectric microsphere.

            V.V. Klimov, M. Ducloy, V.S. Letokhov.

            Journ. of Modern Optics 43, 2251-2267 (1996).

 

73.       Quadrupole radiation of an atom in the vicinity of dielectric microsphere.

            V.V. Klimov, V.S. Letokhov.

            Phys. Rev. A54, ¹3, 4408-4423 (1996).

 

74.       Vacuum Rabi splitting of energy levels in a strongly coupled system of two-level atom and dielectric microsphere.

            V.V. Klimov, M. Ducloy, V.S. Letokhov.

            Phys. Rev. A56, ¹3, 2308-2315 (1997).

 

75.        Resonance energy exchange at nanoscale curved interface.

V.V. Klimov, V.S. Letokhov.

Chem. Phys. Lett. 285, 313-320 (1998).

 

76.       Resonance interaction between two atomic dipoles separated by the surface of a dielectric nanosphere.

V.V. Klimov, V.S. Letokhov.

Phys. Rev. A58, 3235-3247 (1998).


77.        Laser action in stellar atmospheres.
            V.S. Letokhov.
            IEEE Journ. Quant. Electr. QE-8, ¹6, 615 (1972); Preprint of Inst. of Spectroscopy ¹9, 1-24 (1972).

78.        The possibility of the laser effect in stellar atmospheres.
             N.N. Lavrinovich and V.S. Letokhov.
             Zh. Eksp. Teor. Fiz. 67, ¹5(11), 1609-1620 (1974) (in Russian); [Sov. Phys. JETP 40, 800-805 (1974)].

79.         Noncoherent Feedback in Space Masers and Stellar Lasers.
             V.S. Letokhov.
             In: Amazing Light, ed. by R.Y. Chiao, Springer, Berlin (1996), pp.409-443.

80.         Resonance-enhanced two-photon ionization of ions by Lyman radiation in gaseous nebulae.
             S. Johansson, V.S. Letokhov.
             Science 291, 625-627 (2001).

81.         Mysterious UV lines of Fe II from Car blobs.
              S. Johansson, V.S. Letokhov.
              In: Eta Carinae and Other Mysterious Stars. T. Gull, S. Johansson, K. Davidson (Eds.), ASP Conf. Series,
             vol. 242, 297-308 (2001).

82.         Successive resonance-enhanced two-photon ionization of elements inside nebulae: I. Atoms and ions C, N, and O.
             S. Johansson, V.S. Letokhov.
             Astronomy and Astrophysics 376, 319-327 (2001); [Erratum: AA 395, 345 (2002)].

83.         The origin of the anomalous intensity ratio between very bright UV FeII Lines and its satellites in gaseous
              condensations of the star Eta Carinae.
              V. Klimov, S. Johansson, V. Letokhov.
              Astronomy and Astrophysics 335, 313-327 (2002).

84.         Laser action in space: 1 µm lines of FeII in gaseous condensations in the vicinity of Eta Carinae.
             S. Johansson and V.S. Letokhov.
             Pis’ma ZhETF 75, 591-594 (2002); [JETP Lett. 75(10), 591-594 (2002)].

85.         Astrophysical lasers.
              V.S. Letokhov.
              Kvantovaya Elektronika 32(12) 1065-1079 (2002); [Quantum Electronics 32(12), 1065-1079 (2002)].

86.         Radiative ñycle with stimulated emission from atoms and ions in an astrophysical plasma.
              S. Johansson and V.S. Letokhov.
              Phys. Rev. Lett. 90, ¹1, 011101-1-4 (2003).

87.         Anomalously bright UV lines of FeII as a probe for gas condensations in vicinity of hot stars.
              S. Johansson, V.S. Letokhov.
              Astronomy and Astrophysics 412, 771-776 (2003).

88.        Astrophysical lasers with radiation pumping by accidental resonance.
             S. Johansson, V.S. Letokhov.
             Publ. of Astr. Soc. of Pacific 115, 1375-1382 (2003).

89.        Possibility of successive resonance-enhanced two-photon ionization of Ne and Ar in a astrophysical plasma.
            S. Johansson and V.S. Letokhov.
            Astronomical Journal (Russian) 81, ¹4, 1-9 (2004).

90.        Astrophysical lasers operating in optical FeII lines in stellar ejecta of a Eta Carinae.
            S. Johansson and V.S. Letokhov.
            Astronomy and Astrophysics 428, 497-509 (2004).

91.       Astrophysical Lasers in Optical Fe II Lines in Gas Condensations near Eta Carinae.
            S. Johansson and V.S. Letokhov.
            Proceedings of XIX Intern. Conf. on Atomic Physics, July 2004, Atom Physics-19, Rio-de-Janeiro,
            ed. L. Mareassa, K. Helmerson, V. Bagnato. AIP Conf. Proceed., N.Y., 399-410 (2005).

92.       Possibility of measuring the width of narrow Fe II astrophysical laser lines in the vicinity of Eta Carinae by means
           of Brown-Twiss-Townes heterodyne correlation interferometry.
           S. Johansson and V.S. Letokhov.
           New Astronomy Journal 10, 361-369 (2005).

93.      Resonance-enhanced two-photon ionization (RETPI) of SiII and anomalous, variable intensity
           of {lambda} 1892 Å SiIII line in the Weigelt blobs of Eta Carinae.
           S. Johansson, H. Hartman, V.S. Letokhov.
           Astronomy and Astrophysics 452, 253-256 (2006).

94.      Astrophysical lasers and nonlinear optical effects in space.
          S. Johansson and V.S. Letokhov.
          New Astronomy Reviews 51, 443-523 (2007).

95.      Possibility of heterodyne correlation interferometry with tunable laser and absolute frequency measurement.
          S. Johansson, V. Letokhov.
          “Precision Spectroscopy in Astrophysics”, eds. N.C. Santos, L. Pasquini, A.C. Correia, M. Romaniello
          (Springer-Verlag, Berlin), 243-246 (2008).

96.      Astrophysical Lasers.
          V.S. Letokhov and S. Johansson.
          Oxford University Press (2009).